
WHITE PAPER

 Graph Visualization for Graph Visualization for
Enterprise Data ProductsEnterprise Data Products

September 2022 © Kineviz, Inc.

WHITE PAPER

 2

Graph Visualization for Enterprise Data ProductsGraph Visualization for Enterprise Data Products

Contents
Overview 3Overview 3
Graphs for Visualizing Patterns 3Graphs for Visualizing Patterns 3

Graph Data Formats 4Graph Data Formats 4

Discovery through iteration 6Discovery through iteration 6

3D visualization for rapid insight 63D visualization for rapid insight 6

Data sources for graphs 8Data sources for graphs 8
Data access methods 8Data access methods 8

Data as a dynamic resource 10Data as a dynamic resource 10

Building self-service data products 11Building self-service data products 11
Re-designing data architectures for self-service 11Re-designing data architectures for self-service 11

Graph visualization in a self-service environment 14Graph visualization in a self-service environment 14

Conclusion 15Conclusion 15

References and Further ReadingReferences and Further Reading: 16

WHITE PAPER

 3

Graph Visualization for Enterprise Data ProductsGraph Visualization for Enterprise Data Products

OverviewOverview
The ability to access and interpret patterns and trends in data from disparate
sources has repeatedly proven to provide a competitive advantage to enterprises
of various kinds. In wide-ranging public and private domains, such as public safety,
banking, manufacturing, and marketing, supporting timely yet secure access to
data and to its flexible interpretation and re-use is recognized to be of paramount
importance.

Graph data technology, which explicitly encodes data as entities (nodes) and their
relationships (edges), has become a force-multiplier in this arena. Visualizing and
analyzing graph networks is an increasingly valuable feature of emerging knowledge
base, data fabric, and data mesh frameworks.

In this paper, we review how visualization takes a central role in the iterative
processes of data discovery, exploration, modeling, analytics, and, ultimately,
delivery of enterprise data products.

Graphs for Visualizing PatternsGraphs for Visualizing Patterns
Graph data technologies are central to exploring patterns and visually highlighting
their meaning. Encoding data as nodes connected by edges makes it possible to
visualize connections in data in a way that humans naturally think about them. A
connected graph pattern can immediately show the strength and reach of networks
of many different kinds.

For example, the following map of crime incidence shows various types of
connections between crimes and the people involved.

WHITE PAPER

 4

Graph Visualization for Enterprise Data ProductsGraph Visualization for Enterprise Data Products

When expressed as nodes connected by edges of specific kinds, the network can be
explored. Using graph analytics, patterns can be explicitly measured in terms of path
lengths, degree of connection, clusters, and other measurable graph characteristics.

For example, in the following graph of fraud investigation data, connecting
transactions with their owners, then tracing owners within three degrees of
separation quickly clarifies relationships between those involved in a fraud ring.

Graph Data FormatsGraph Data Formats
Graph data can be expressed in two main formats: as a labeled property graph
or the W3C standard RDF exchange format. These are accessed using different
modeling and query processes.

WHITE PAPER

 5

Graph Visualization for Enterprise Data ProductsGraph Visualization for Enterprise Data Products

• Labeled property graph (LPG) data is encoded as nodes or edges. Each will have
an ID and at least one label or type. A node or edge can also include associated
properties. This results in graphs that are relatively easy to query, work with, and
visualize. Property graph database formats are not standardized, though they do
usually provide ways to share data through open-source query languages and
import/export functions.

• RDF data is encoded in the highly standardized interoperable Resource
Description Framework (RDF) exchange format. Unlike LPG, every fact is
explicitly visible in the graph. Meaning of the data is encoded in a semantic
model that is separate from the data itself. This makes it possible to re-define
and re-use data at will. And because the structure of the data is completely
predictable, the resulting graphs can be easily and rapidly evaluated by
automated systems. However, compared to LPG graphs RDF patterns are
visually confusing to humans, even for a very simple graph such as the following
telephone call example.

Interoperability of data is highly desirable, because it makes it much easier to
automate and decentralize the process of serving data to applications. To achieve
this, one can either express all the data in a single format and framework (the RDF/
Semantic Web path), or build data pipelines that re-format data tailored to the needs
of a given application.

Full interoperability is very costly for both implementation and management. And
in the real world, knowledge always evolves. Even for successful RDF deployment,
translation to an LPG format can ease and speed up visualization and exploration.

WHITE PAPER

 6

Graph Visualization for Enterprise Data ProductsGraph Visualization for Enterprise Data Products

Discovery through iterationDiscovery through iteration
The workflow and processes involved in exploratory data analytics – graph-enabled
or not – are inherently exploratory and highly iterative. Initial engagement with
data is likely to suggest additional and unexpected avenues of investigation. This
means that discovery must be both reproducible and flexible. Questions focused
on change over time require that we deliver data of similar provenance and quality
repeatedly. New questions will likely require access to entirely new data sources and
new data models. Domain experts must develop an understanding of where useful
data resides, what it looks like, and how to focus it on delivering actionable results.
The challenge is to collect, visualize, interpret, package, and manage data, both to
communicate insights over time and to enable potential re-use.

A key advantage of graph data models is that they are both flexible and extensible.
Once data is imported to a graph environment, further validation, transformation,
inspection, sharing, and export can occur. New entities and connections can be
added without the need to rebuild or re-design a model. Data can be transformed,
both to create explicit graph patterns from implied connections and to reduce and
simplify patterns.

For example, tabular data in CSV format can be imported directly into a Neo4j graph
database (and most other graph databases), where it can be modeled, validated, and
transformed in the process. Graph applications such as GraphXR and Neo4j Bloom
enable many of the same processes. For example, the mapping editor feature of
GraphXR lets you model any column of a CSV as an entity or relationship, or as a
property of either. Once imported, the graph can be transformed by extracting new
categories and relationships, or by merging, linking, or aggregating existing ones.

3D visualization for rapid insight3D visualization for rapid insight
Visualization of patterns by human data analysts is a rapid and reliable way to
discover value in data. This is true at almost every point along a discovery path,
from viewing data imported from diverse sources to transforming its patterns and
communicating actionable insights. Exploration in virtual 3D is especially effective
for working with high-dimensional data.

Although 2D visualization remains a preferred mode for communicating business
intelligence, adding a virtual third dimension during discovery and exploration is a far
more intuitive way to work with data. Enabling human domain experts to visualize
patterns is often the most effective way to clarify and focus the stories the data can
tell. This is because it encourages explainability—a pivot to the “how” and “why” in a
pattern—rather than just presenting black-box metrics.

WHITE PAPER

 7

Graph Visualization for Enterprise Data ProductsGraph Visualization for Enterprise Data Products

Even simply reorganizing the layout of data in a virtual space can bring pinpoint
focus to exploration. As the following examples illustrate, one can quickly:

• Highlight outliers or unconnected data,

• Explore geo-located or time series properties,

• Visualize the results of graph analytic functions such as clusters or measures of
connectedness.

WHITE PAPER

 8

Graph Visualization for Enterprise Data ProductsGraph Visualization for Enterprise Data Products

Data sources for graphsData sources for graphs
Enterprise data stores can be in many different formats: document or relational
databases, flat tables, documents with standardized exchange formats, or in an
unstructured format such as text. Efficient, rapid access to scattered data has
traditionally been achieved by extracting data of interest, transforming it as needed,
and loading it to one or more centralized warehouses. These repositories are almost
always structured as indexed tables or hierarchical documents, to assist with query
speed and efficient computation.

To manage rapidly exploding data volumes, there has been a wholesale adoption of
cloud computing, which delivers robust and cost-effective infrastructure, platform,
and computation services. Environments such as ElasticSearch, Google BigQuery,
Snowflake, Amazon Web Services (AWS), Microsoft Azure, and others provide
data ecosystems in which data can be selected, stored, accessed through query
(most often SQL) or other API services, then transformed through microservices.
Dashboard software (for example, Kibana, Tableau, AWS QuickSight, and others)
is increasingly available to provide both visualization and analytics, including
capabilities to display data in terms of graph connections, timelines or geographic
locations.

Data access methodsData access methods
It has become relatively straightforward to access structured data from whatever
source and model it as labeled property graph or RDF graph data. Access to data
through API, query, or even drag-and-drop is typically conceived of as a one-way
flow into a graph environment. That is, the structure of the source data is of interest
only insofar as it affects the query process. Since flexibility and extensibility is central
to graph technology, most (if not all) graph-enabled applications and databases
include support for iterative data modeling. This means that a graph pattern can be
modeled as part of the import process, then transformed further from there.

Drag and drop is a rapid way to explore and model data that can be exported as
CSV files or JSON documents (from sources as simple as an Excel spreadsheet to
relational database tables). A CSV imported as labeled property graph data results
in the automatic transformation of table rows to entities (nodes) with properties
defined by the column values. Graph databases such as Neo4j, ArangoDB, Amazon
Neptune, and many others, and graph platforms such as Perspectives, Ontotext,
and TopQuadrant also provide the capability to filter or validate tabular data or
documents accessed in this way.

WHITE PAPER

 9

Graph Visualization for Enterprise Data ProductsGraph Visualization for Enterprise Data Products

A query or API provides a more granular way to specify the data to be imported
from a given source. Databases or data warehouses can be accessed using a variety
of query languages (e.g. SQL, Cypher, AQL, Gremlin, SPARQL, and others) that
enable data selection and transformation as well as varying degrees of constraint
validation and exception handling. The query language used will depend on the
source format.

Open-source data stores like Wikidata and DBpedia typically provide query front-
ends or API endpoints that can be used as is or extended as needed. RDF, the W3C
standard document interchange format designed for fast access and re-use of graph-
native data, has been widely adopted for these very large interoperable data stores.
In one step, you can extract data you need, and model it as graph data. For example,
access to Wikidata’s RDF stores is provided through the Wikidata Query Service.
It includes a basic SPARQL query interface, a selection of example queries, a simple
no-code query builder, and the capability to export the returned data. One of its
example projects provides a SPARQL query for data about the Academy Awards:

The above query returns tabulated data that can immediately be exported in CSV or
JSON format and mapped into a graph environment.

WHITE PAPER

 10

Graph Visualization for Enterprise Data ProductsGraph Visualization for Enterprise Data Products

Data modeling platforms can help create reproducible access to diverse data
sources. Software platforms such as TopQuadrant’s TopBraid EDG provide full-
featured RDF data modeling using OWL and RDFS languages. It’s worth noting,
though, that in practice, SPARQL queries combined with constraints provided
through the SHACL shapes constraint language turn out to be both effective
and easier to implement and manage. Within a controlled-access environment,
APIs developed using REST or GraphQL become elements of an overall data
management architecture to supply data to applications on request while complying
with security and access constraints. This might involve accessing a data warehouse
or data lake, or implementation within a formal integrated knowledge graph.

Data as a dynamic resourceData as a dynamic resource
Data sources are increasingly distributed rather than centralized. Useful data may be
maintained in curated domains within an enterprise, or in open-source repositories.
These data stores are far from static – new data types may be added frequently and
the data may be refreshed almost continuously. Any useful knowledge management
architecture must support accessing new data sources and seamlessly integrating
new information and the new ways of looking at it.

There are many benefits of harnessing large data streams that can be fed into ML or
AI automated processes. However, although it is definitely possible to replace human
engagement, it is not always appropriate or effective. The trick is to automate large-
scale data-driven processes where possible, and at the same time make exploratory
data analysis as seamless as possible for human analysts and investigators.

For example, a Kineviz project to use streaming Twitter data for analysis of trends
in political sentiment over the 2020 election cycle connected a variety of cloud
provisioning services and machine learning applications with graph visualization.

This architecture provided human observers with the near real-time visibility and
analytic capabilities needed to investigate and explore shifts in the developing
political situation.

WHITE PAPER

 11

Graph Visualization for Enterprise Data ProductsGraph Visualization for Enterprise Data Products

Building self-service data productsBuilding self-service data products
Now let’s take a brief look at how data management architectures are currently
evolving to support the shift to data-driven applications.

Typical legacy architecture involves data of many different types located in silos
throughout an organization. Data is served to an application layer through APIs or
queries, as noted in the figure below.

With this architecture, required data often resides in too many different formats and
databases, which results in very slow access times. Even when collected in a single
mainframe RDBMS, data lake, or data warehouse, queries may still be too slow and
expensive. Furthermore, data is often inadequately defined and poorly protected.

Re-designing data architectures for self-serviceRe-designing data architectures for self-service
To address an architecture that doesn’t adequately support modern data-consuming
applications, data can be accessed and stored through a well-defined operational
layer or Data Fabric. A data fabric is built around centralized data warehouses, data
lakes, or even knowledge graphs populated from available data sources. Maintaining
source data models is not required, and typically not even allowed. Data that’s
saved would be sent to a new data store within the control of the data fabric. The
result is a set of data sources for which extract, transform, and load (ETL) processes
and access services for data-driven applications are delivered. All this can be
implemented as on-premises infrastructure owned by the enterprise. Increasingly,
though, it’s set up through cloud computing services.

WHITE PAPER

 12

Graph Visualization for Enterprise Data ProductsGraph Visualization for Enterprise Data Products

Data fabric is the number one Gartner Technology Trend for 2022. That’s because
using it has made it possible to recover nearly 70% of developer work in the data
life cycle. Creating a centralized data fabric is still quite resource-intensive, but it
has important advantages, particularly in supplying large amounts of clean data for
machine learning or AI applications.

As data stores multiply in number and size, they present serious challenges in terms
of interoperability, performance, and quality. To help with these issues, a knowledge
base or knowledge graph architecture can be put in place. This consists of a formal
collection of data and the data dictionaries, taxonomies, and semantic models that
may be applied for various well-defined purposes. A knowledge graph includes full
interoperability and strong governance structures, also expressed as graph data.
Efficient tools and platforms to build out and extend knowledge graph architectures
now exist and have been successfully deployed by many enterprises.

However, a commitment to interoperability across the enterprise is required. This
can be difficult to achieve all at once, especially as new requirements continually
emerge as the engagement with the data deepens. Those with experience building
knowledge graphs advise starting small: building non-disruptive technology that sits
beside existing systems, building just what’s needed to show a particular successful
outcome, and then planning to iterate and extend the system For in-depth
discussion of these experiences see The Rise of the Knowledge Graph (2021) and
Knowledge Graphs (2021).
Factors such as insufficient staffing, or unfamiliarity with specific knowledge
subdomains can derail the responsiveness of knowledge graphs within a data fabric.
Data management headaches such as silos, duplication, and synchronization issues
can persist. When that happens, users will find ways to do end-runs around a system
that can’t (or doesn’t yet) meet their needs.

WHITE PAPER

 13

Graph Visualization for Enterprise Data ProductsGraph Visualization for Enterprise Data Products

To address these issues, a distributed Data Mesh platform architecture has emerged,
and is now gaining in popularity. It was first introduced by Zhamak Dehghani in
2019, who defined it as:

“… an intentionally designed distributed data architecture, under centralized
governance and standardization for interoperability, enabled by a shared and
harmonized self-serve data infrastructure.”

The distributed model attempts to pre-empt points of failure that are repeatedly
experienced with centralized architectures. Global governance is still put in place to
support the overall experience of the enterprise’s data consumers, but data remains
in independent domains that can be accessed through a shared data infrastructure
platform. The design is intended to promote domain data ownership and data
as a product, with the additional goal of creating a self-serve data platform that
includes federated data governance. A data mesh does support rapid iteration of
exploration, analysis, and insight because it encourages domain experts and cross-
functional teams to take the lead in creating data products that can be shared and
re-used in specific, controlled ways. This has already lead to profound creativity and
collaborative problem solving. The current trend is summed up in a recent blog post:

“Every data-first company strives to or is already in the process of adopting a
self-service business intelligence model.”

However, it’s important to recognize that there is usually a continuum from more ad
hoc to more controlled data provisioning. In practice, a mix of architectures are often
in place operating side-by-side, either by design, or as temporary structures as a new
architecture is adopted. Ultimately, implementing a data mesh is seen as a three-
part journey involving 1) a shift of mindset, 2) building the platform support, and 3)
implementing federated governance.

WHITE PAPER

 14

Graph Visualization for Enterprise Data ProductsGraph Visualization for Enterprise Data Products

Graph visualization in a self-service environmentGraph visualization in a self-service environment
In a self-service data ecosystem, exploratory data visualization becomes especially
useful. Domain-centered teams need to be able to explore and evaluate available
data sources, build graph models according to their specific needs, and then federate
data products for use across the enterprise. The data products being delivered must
include not just the required metadata on provenance, quality and ownership, but
ideally visual examples and interpretation as well.

Because visualizing patterns speeds up insight at every point in a data workflow, an
infrastructure platform must include no-code or low-code collaborative software
tools for data access, modeling, visualization, analysis, and communication. Teams
focused around the interests of domain experts need their tools for visualizing data
to be democratized, easy to understand, and seamless to use.

GraphXR stands out in this regard because it can pull data from almost any
structured source, which can then be collaboratively accessed, modeled, explored,
and transformed. If desired, data can be saved to a graph database or as JSON
documents readable by many other applications. So, while a separate graph database
repository can be used, it is not actually required. Integrated 2D and 3D visualization
lets users find the best ways to work with data and communicate those insights to
a larger team. Finally, an integrated notebook extension is available that provides
support for reproducible data pipelines into the graph environment, along with
dashboard-like visualization for exploration and analysis.

Ease of visualization will continue to be a focus of graph-aware products. Cloud
computing platforms provide access to visualization dashboards as part of their data
management offerings. Examples include AWS QuickSight, Microsoft Data Explorer,
ElasticSearch Kibana, Google Data Studio or BI Engine for use with BigQuery, and
many others. These provide prepackaged visualization options similar to what can be
developed in Python, Observable, or CoLab notebooks: 2-dimensional charts (line,
pie, and histogram), geographic mapping, and 2D representation of graph data.

Graph databases such as Neo4j, TigerGraph, NebulaGraph, MemGraph, ArangoDB,
and many others include at least 2D visualization as part of their basic tool sets.
Graph database purveyors are racing to offer large-scale analytic and exploratory
connectivity, to respond to the continued interest in integrated, large-scale
knowledge graph architectures.

WHITE PAPER

 15

Graph Visualization for Enterprise Data ProductsGraph Visualization for Enterprise Data Products

ConclusionConclusion
Graph data, with its emphasis on patterns and connections, enables rapid
visualization of high-dimensional data in terms of how humans naturally think. Graph
data is relatively easy to build from data stored in other structured forms, meaning
that many patterns implied in those data can now be investigated and utilized.

With the explosion in the amount of data available, the need for agile data-driven
insight has led to the adoption of data management architectures that empower
domain experts to contribute data products to the enterprise. A key challenge is to
build an organization-wide architecture that can respond rapidly not just to changing
data but also to the changing questions that arise during iterative exploration and
analysis. This raises the need for full-featured, easy-to-use visualization and analytic
tools to engage with the self-service model of data discovery, exploration, analysis
and communication of results.

WHITE PAPER

 16

Graph Visualization for Enterprise Data ProductsGraph Visualization for Enterprise Data Products

References and Further ReadingReferences and Further Reading:

Knowledge Graph and Data Architectures:
Barrassa, J., Hodler, A., and Webber, J. Knowledge Graphs. Data in Context for

Responsive Businesses. July 2021.

Dehghani, Zhamak. 20 May, 2019. How to Move Beyond a Monolithic Data Lake to a
Distributed Data Mesh.

Dehghani, Zhamak. March, 2022. Data Mesh. Delivering Data-driven Value at Scale.

Gartner Group. Top Strategic Technology Trends for 2022.

Martin, S., Skekely, B., and Allemang, D. March 2021. The Rise of the Knowledge Graph.
Toward Modern Data integration and the data Fabric architecture.

Mehta, Yash. Jan 4, 2022. Business leaders Must Make Data Fabrics a Priority in 2022.

Query / Modeling languages:
Arango DB AQL

Cypher, CSV to graph via Cypher

SPARQL, SPARQL Basics

SHACL, Why I use SHACL for defining ontology models

TigerGraph GSQL

OWL / RDFS, OWL and RDF, Why I don’t Use OWL any more

Data Interchange and Standardization
Gavin Mendel Gleason. The Semantic Web is Dead - Long Live the Semantic Web!,

Github Blog Post, August 2022.

Web Standardization for Graph Data: 2019 Working Group Announcement.

Weinberger, D. August 10, 2016. SOLID (social Linked data) and the Interplanetary File
System (IPFS)

API/ Access Platforms
Phil Sturgeon. 23 Jan 2017. GraphQL vs REST: Overview

AWS Athena / QuickSight

MS Azure / Data Explorer

ElasticSearch / Kibana / Elastic Stack (Elasticsearch, Kibana, Beats, Logstash)

Google BigQuery - SQL data warehouse / BI Data Studio

Kineviz: How to visualize Google BigQuery on GraphXR

	Overview
	Graphs for Visualizing Patterns
	Graph Data Formats
	Discovery through iteration
	3D visualization for rapid insight

	Data sources for graphs
	Data access methods
	Data as a dynamic resource

	Building self-service data products
	Re-designing data architectures for self-service
	Graph visualization in a self-service environment

	Conclusion
	References and Further Reading:

